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( ABSTRACT

A finite difference model for predicting the nearshore

circulation due to wind and waves is presented which attempts to

solve the same problem as an earlier model created by Birkemeier

and Dalrymple (1975). Their model iteratively solved the linear

set of conservation equations of both mass and momentum, which

were time averaged (over one wave period) and depth integrated,

for mean velocities and free surface displacements. The wave

characteristics used in the momentum equations were found using

the wave refraction and shoaling routines, including wave-current

interaction, developed by Noda, et al. (1974). The model also

included a linear bottom friction formulation as well as a surface

wind stress capability. V
The present model discussed herein includes the addition of

convective accelerations, horizontal mixing and a quadratic

bottom friction term in the conservation of momentum equations.

This bottom friction term is "exact" in the sense that it includes i
the velocity vectors due to both mean and wave-induced currents.

ivsob,



J The model is applied to the cases of a single wave train

impinging on a plane beach, a barred profile, and a bottom with a

Iperiodically spaced rip channel.. It is also applied, in a
simplified form, to the case of two intersecting wave trains at

oblique angles to a plane beach. Results indicate that these

additions to the model are important in attempts to model the

circulation patterns over bottom bathymetries found in nature.
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CHAPTER I
INTRODUCTION

In recent years there has evolved a special interest in the

environment around our extensive coastline. This interest is a result

of the growing usage of these areas for industry and recreation.

Those industries which rely on water as a primary mode of transporta-

tion for both raw materials and finished products are spending large

amounts of time and money designing efficient access and docking

facilities. Coastal communities are spending more money to maintain

the condition of their recreational facilities located around

water bodies. As people grow to depend on these regions for their

livelihood, they become increasingly concerned with changes to the

coastline and with efforts to maintain it in its present condition.

The problem of sediment transport is a primary concern of

industry and resort communities. Its effects are clearly visible,

yet an understanding of its causes and the ability to predict it

accurately are just starting to unfold. An integral part of the

sediment transport problem is an ability to describe the flows which

serve to move sediment, such as the creation of a velocity field in

the surf zone due to breaking waves.

3.I
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Noda, et al. (1974) developed a steady state model which

predicted the nearshore circulation due to waves and wind. Liu and

Lennon (1978) also developed a steady state model using finite

element techniques. Birkemeier and Dalrymple (1975), building on the

efforts of Noda, et al., created a time dependent model to describe

nearshore circulation due to the same forces. The effort reflected

in this thesis is an attempt to extend the work of Birkemeier and

Dalrymple one step further; to develop a more complete and accurate

numerical model to predict flows along a coastline by including the

effects of convective accelerations and lateral mixing, and by the

use of a bottom friction term which includes the velocities due to

both waves and mean currents.

There are many advantages to using a numerical model to

investigate this problem. First of all, the problem at hand is so

complex that only through numerical methods can it be solved.

Secondly, the model enables the user to study an unscaled prototype

situation. Thirdly, once the model has been established its generality

enables it to be used theoretically on any stretch of beach. Finally,

the model arrives at solutions rapidly when adapted to use with a

high speed computer.

In order to formulate the problem so that it may be solved

numerically the following requirements must be met:

Ii*
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(1) a set of governing equations must be selected
to accurately describe the physical processes
at hand; the model is only as good as its
governing equations,

(2) boundary conditions must be established overI the region of interest, and

(3) initial conditions must be defined.

Only when these requirements are met can we hope to obtain an accurate

solution.

.! I
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CHAPTER II
GOVERNING EQUATIONS

INTRODUCTION

The first step in problem formulation, as just mentioned,

is the selection of governing equations that accurately describe the

physical processes at work. This numerical model uses as its

basis the equations describing conservation of both mass and momentum

in a time averaged (over one wave period) and depth integrated

form.

The purpose of the time averaging is to remove the fluctuations

in time due to waves. The model deals only in mean quantities. The

reasons for depth integrating the equations are, again, to deal with

mean quantities, thus time over depth, and to reduce the problem

from two horizontal and one vertical dimension into only two

horizontal dimensions. In the process of depth intftgration the

Leibnitz Rule was used to remove partial derivatives from within an

integral. It is given by

':::: f(x~x) dx f(x,y)dx- f(8(y),y) + f(a(y),y)aa(y)fa(y) aY Dy O(y) By By

The remainder of this chapter is devoted to the derivation of

the integrated conservation of mass and momentum equations and the

4
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"forcing" terms found in the momentum equations themselves. The

three basic equations discussed above will be derived in detail.

The equations which are solved to yield the wave characteristics,

the radiation stresses, and the wind stress will be discussed

briefly. For a more detailed derivation the reader is referred to

the work of Noda, et al. and Birkemeier and Dalrymple. The

bottom stress derivation and the formulation of the lateral mixing

terms, however, will be discussed more fully as they are new

additions to the model.

BOUNDARY CONDITIONS

Certain kinematic boundary conditions are used in the formu-

lation of the mass and momentum equations. The boundary conditions

state that if we move with a surface given by

F(x,y,z,t) = 0

then a water particle cannot flow across the surface, otherwise

the surface would cease to exist. Mathematically, this condition

is expressed by the total time rate of change of the function

F(x,y,z,t) equals zero.

DD- (P(x,y,z,t)) = 0

At the free surface the boundary is given by
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F (X,Y,Z,t) 2 - r(X,y,t) =0

and at the bottom

F (x,Y,Z,tj z + h(x,Y,t) 0

Therefore, for the kinematic free surface boundary condition

(KFSBC),

aF IF + v 2F+ -u--+ w-2F= 0at ax ay az

or

w an 9n 3
nY at nax + a (1) T

For the bottom boundary condition (BBC) it can be shown that,

Dn+U h + vha+h =0 (2)

where u,v,w are the velocity components in the x,y, and z directions

and the subscripts denote the location of a specific term whether it

be at the bottom, z =-h, or at the free surface, z n.

CONTINUITY EQUATION

The general form of the three dimensi onal continuity equation

which states that mass is conserved is,

lp (P U) + 3(P ) + -O) (3)

at ax ay a
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where p is the density of the fluid.

Integrating over depth from z - -h(x,y,t) to z = r(x,y,t) and using

the Leibnitz Rule, Equation (3) becomes

a f n  an 3(-h)+ a n

t -h p dz - Pn t + P-h at a ax -h pudz

- n u (-h) + 1fn1 pvdz i

ax aya-hx -h

-Pv n D (-h) +Pw- P-h~
nVn T+ PhV-h ay +PWn nh

Simplifying by substituting in both the KFSBC and the BBC,

the continuity equation can be written

pdz + _Ifx pudz + fn -h z= 4
ah -hpvdz-0 (4)

Let both u and v be comprised of a time independent mean

flow, a wave induced flow, and an arbitrarily fluctuating component

(turbulence) such that

u= + + u'

It is important to note that the turbulent fluctuations u'

and v' are of very high frequency and by definition their time

averages (over a short period of tinae) are identically zero.
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jJu'dt 0

1. 0 v'dt 0

By substituting the above expressions for u and v into

Equation (4), time averaging over one wave period so as to eliminate

* the wave induced fluctuations, and using the definitions for the

time average of the turbulent components, the continuity equation

can be written as

I

3px x -- - -Pudza {p )} + l {PU(h + r)} + -x1h

+y pV(h+ n)+ -h Pvdz =0 (5)

where the symbol "---" denotes the time average over one wave

period and ni the time independent mean free surface displacement.

Note that the time average of the vertically integrated wave induced

velocities u and v is not zero.

Defining U +

V V V+

-pdz h- pdz

where u- and
p(h + n) p(h + n)
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are the mass transport velocities and substituting the total depth

D for (h + r), the time averaged depth integrated continuity equation

is, in its final form

an
+x a (UD) + a (VD) = 0 (6)

Also inherent in the derivation are the assumptions that the bottom

is constant with time and the density is constant in space and

time.

MOMENTUM EQUATIONS

The x and y momentum equations are manipulated in the same

way as the continuity equation in order to achieve equations which

are independent of wave induced oscillations, i.e., they are

integrated over depth and time averaged over a wave period. The

general form of the horizontal momentum equations are; in the x

direction,

au au2  lapuv +uw 1 T T + aT(7)
at ax ay az Pax p ax ay az

and in the y direction,

2 aT a 1T

av auv av2 +vw 1 aP 1 xy + } (8)
at' ax a +az p ay +  ax ay az

The x momentum equation wil I be dealt with first. Integrating

the left hand side over depth and using the Leibnitz Rule to remove
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derivatives from within the integra's give term by term,

Tau TIan Da(-h)(LHS) -dzdz-u +U
--hh t -h at

nau a (1 2 2 an 2 9(-h)

-h a dz d- -ha+uh ax

f auv a an hV - a(-h)dz= uvdz-u +

-h a ay f h n n y -h-h ay

n auwdz u w

f-h az n n -h-h

Rearranging terms the (LHS) becomes,

a u2d+3f -h
-h udz + u -h uvdz

-( an+ _ + -Vn@__)nat nx nay f

ah ah ah
-U-h ( + U-h -x + v-h 3 + W-h)

* which after substituting the KFSBC and the BBC simplifies to,

* (2 a
(LHS) x udzf+ udz+ - uvdzat -h -h

a n dz+ hE
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Again letting the total velocities u and v be defined as

u U + U+ U'

v + + v'

Substituting and averaging over a wave period, the (LHS) becomes

term by term,

uJ- Udz +a udz + u'dz

d - -- JUdZ-+ T 1-h -h uId

o-h -h a -h

a~ fn 2 a n nd 2 aa nu.

T u +2.1 tYdz + + uvdz ++f
a r

x -h -9-J-h ax -h " -h

+ 2 + a u',dz + 2 u'dz
'-h -h -h

+y + By -+ a'-
f-h f-h f-h

+ i _'d + i w lvz u'vd.
ay-h Y-h -
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Since the frequency of the fluctuating components is much greater

than the wave frequency, the wave induced velocity is essentially

constant relative to the turbulent fluctuations. Therefore, integrals

which involve products of a turbulent component and a wave induced

component are zero in the time average. Using this result the (LHS)

becomes,

Sudz = ~-h + -h udz
at -h J-h d -h

'I°  + ~ 'h°'' r°
dz dz + udz +  f 2dz

X -h uv W'-h h a -h

+ - h h2fudz

ax -h-h

n TI

The right hand side after integrating over depth is

aNS f-~ -dz +Y f -dz + a -vdz + -Vd

< '- =X-h+ = =h ay -h az '

IT
+ z+uvd

_~~a f' a....... f '.
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assuming the density is constant in space and time. If we also assume

an inviscid fluid such that no horizontal viscous stress exists, then

Tyx and r become zero. Integrating over a wave period and invoking
yx xx

the Leibnitz Rule on the pressure gradient term, the (RHS) becomes,

1 1 n 1 Th 1 1
Pdz +-P - -P - +T - -

ax _,h p X n -h ax p zx p zX-h

Assuming that the pressure at the free surface P is zero and

realizing that T and T are the time averaged surface and

bottom shear stresses, the (RHS) is rewritten as

1 a (n 1 9h 1- 1
P Pdz + - P- +- - -px -h p -hx p sx r Tbx

The mean pressure at the bottom P-h can be defined as the

sum of the dynamic, or wave induced pressure at the bottom, and

the hydrostatic pressure at the bottom such that

P- Pdynh + pg(h + )

Therefore, h can be written as,
-h ax

P-h 3 f dn h 8- + pg(h + j)h
-h ax Pdynh ax- ax

or alternatively as

I1
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I
3 =h P + {g(h + ) - g (h + t) ax

p -h ax P dynh ax 2 ax T

Using the result the time averaged, depth integrated x momentum

equation is given by

* T) a -n
n+ ) + f-h adz} + ix { 2 (h + n) + 27 udz + I u2 dz
-hB -h -h

h-h - T

-h dyn_h a)x ax -Tsx - bx

-ax -hu2 a y- u'v'dz(9

The quantities called the radiation stresses, or the excess

momentum fluxes due to the presence of waves are defined as

fol ows,

S -n - pg(h + n)2  1 2 udz)2

-h p (h + Q) -h
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Sxy _= p a;,dz pvdz npadz
-h p (h +n) -h d -h

f n  1 -2 1 2

yy (P+pv 2 )dz - . pg(h + n) - { pdz}
-h p (h + n) -h

The following assumptions will also be used:

(1) The product of the wave induced pressure at the
bottom and the bottom slope will be assumed
negligible,

(2) The gradient of the pressure due to turbulent
fluctuations,

- 2 dz , is neglected, and5x f-h

(3) The lateral friction caused by momentum fluxes
due to turbulent fluctuations is assumed to be
independent of depth.

This lateral friction will be called T and is defined as T, = -pu'v'.

Finally letting the total depth D be defined as D - (h + ),the x

momentum equation in its final form can be written as,

ax ay

s as
1 ay 1 xx 1- -1

a ay p ax p sx p bx

Following the same procedure the final form of the y

momentum equation can be found to be, Ii
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(VD) + (UVD) + (V2 D) -9D (i D 3T

as as
P By P By P sy P by

WAVE TRANSFORMATIONS INCLUDING WAVE-CURRENT INTERACTION

The equations which govern both wave refraction and shoaling

as a result of wave-current interaction used in the model are those

of Noda, et al. The original derivation can be found in the report

presented by Noda, et al. The advantage of Noda's method is that

it predicts the wave angles and wave heights at certain points

rather than along a wave ray. This procedure lends itself well to

use in the finite difference model because calculations are performed

at points which lie in the center of rectangular grid elements

which are part of a larger grid mesh.

Starting with a progressive linear gravity wave, the free

surface can be written as,

n(x,y,t) =a(xty,t)cos{f(x,y,t)}

where a is the wave amplitude and f is some phase function. A

wave number vector can be defined as

(12)

I



17

and a wave scalar frequency can be defined as

= - (13)at

Using the mathematical property that the curl of a gradient is

identically zero, it is shown that

V x V= 0

which implies that

Vxk= 0

This equality states that the wave number vector is irrotational; i.e.,

the wave in question cannot travel in circles. Assuming (x,y,t)

is continuous

T (V ) = Vt at

or substituting Equations (12) and (13) into the above expression,

it is found that

T + Va 0 0 (14)
at

which is the classical conservation of waves equation.

For the case of a wave propagating on a current with velocity

ul + vj, it can be shown that the scalar frequency with respect

to a stationary reference frame is
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a= +k u

The wave frequency with respect to a moving reference frame is

given by the dispersion relation,

2 = gk tanh kh (15)

If it is also assumed that the wave number field changes slowly

with time then from Equation (14)

4. 4
V(a + k • u) = 0

or

a+ k u = constant (16)

This constant can be evaluated for the case where u = 0 in which

21
case a = -where T is the wave period.

Equation (16) then becomes

a+ k •u (17)
T

Using the coordinate system shown in Figure 1 and expanding

Equations (12) and (17) into Cartesian coordinates and using the

dispersion relation, the equations which govern wave refraction

through wave-current interaction are given by

0 .L~k ae 1 k
Cos 3 k---} + sin -{ -1y + k x = 0 (18)Bo x k ay

{gk tanh(kh)1/2 + uk cos 8 + vk sin 8 = 2_ (19)T

wher-e 8,k,h,u and v are all functions that may vary in both the x

and y directions.
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y

V-

Hk Wave NumberHorizontal

Components
of the
Current u

S Wave Angle

x

Figure 1 Planform Definition Sketch for the Wave Transformation Equations

The shoaling of waves is also affected by the interaction of

waves and currents. The effect on the waves is determined by solving

the energy equation. The form of the energy equation used in the

model is the time averaged (over one wave period), depth integrated

form for the case of a wave propagating on a current given by

u ul + v]. Turbulent effects and dissipation are neglected in

the derivation which can be found in Phillips (1966). His result

is given by,

Tt i {Eu+C' -I E(v+ C )} + S
gx Dy y xx ax

+ S au v 3- 0 (20)
xyY+ Syyy+ syx y

I.
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Dividing by E and expanding in Cartesian coordinates,

Equation (20) can be written,

DEf (u+C cos O) -- + (v + C sinG) _E
E a g Eax g E ay

+ a (u + C Cos 6) +y (v + Cgsin)

1 S u u 3v av+I{S + S -L+S -+s -L =0
E xx Dx xyay yy ay xy y

In the above equation, E is the total energy, both potential plus

kinetic of a progressive linear water wave and is given by

S1 H2
E p g H

where H is the wave height.

Using this result, carrying out the differentiation, and

letting a quantity Q be defined as

1 I s u + u - + v + 2v }
E xx x xy xy yyax

the energy equation becomes,

!, H 2a 2H au
2 0) (v+C sin 0) - H+ u-+ v

H t H + ux g HaDy ax ay

-C sin0 T + coo e-I + C cos e sin 0 Q -0 . (21)
g 8X ax 9 ay

S . -
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For all applications of the model the wave height H is assumed

constant in time so L= 0. From linear wave theory the group

velocity Cg is given by

C 2Jch
g 21 sinh(2kh)

where

= k tanh(kh) 11/2 k1
is the wave speed or celerity, k is the wave number, and h is the

water depth. .

RADIATION STRESSES

In the derivation of the momentum equations the radiation

stress terms Sx, Sxy and Syy were defined. Those forms can be

simplified, and it has been shown, Longuet-Higgins and Stewart

(1962), that to second order for a progressive, linear, small

amplitude wave they can be approximated by,

S = E{(2n-i/2)cos2e + (nli/2)sin2 }elxx

S =En cos e sin e
xy

S = E{(2n-i/2)sin2e + (n-i/2)cos2 }YY

where E is the wave energy, 0 is the wave angle, and n is the

ratio of group velocity to wave celerity: f

[7
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1 2
E pg H

( 2kh
C 2 sinh 2kh'

where
~2w

k - wave number (= -f)

L - wave length

h = water depth and

H = wave height.

WIND STRESS

The capability to handle a wind stress was retained from the

work of Birkemeier and Dalrymple (1975). The wind stress is included

as the surface stress in the horizontal momentum equations. No

wind effects were included in applications of the present version

* of the model. A brief summary of the wind stress formulation is given

below.

The form for the wind stress terms was assumed to be

PKWI

sy y

• 1
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where w is the magnitude of the wind speed and wx and WY are the

x and y horizontal components of the wind speed. The density of

water is p and the wind stress coefficient K is based on the work of

Van Dorn (1953) and assumed to be a function of the wind speed such

that

for w<w

wc)
(1--- for w >wc

w is a critical wind speed taken as 14 knots and the

-6 -6
coefficients K1 and K2 are taken to be 1.1 x 10 and 2.5 x 10

respectively. A comparison of this coefficient, K, with real

data is given in the work of Pearce (1972).

BOTTOM STRESS

The bottom friction used in the model is of the quadratic form

-1. 1 4-b= -f ut ut

where "-" again denotes the time average over one wave period.

-
The total velocity vector ut is comprised of both mean currents

and wave orbital velocities. The quantities p and f are the water

density and the Darcy-Weisbach friction factor, respectively.

Referring to Figure 2, the mean current, , can be broken into its

x and y components u and v.
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~v

I I

U 1-V

Figure 2 Definition Sketch for the Bottom Friction Formulation

The wave angle is given by theta and i and j are unit vectors

in the x and y directions.

The total velocity vector ut can be expressed as

u t = (u + U cos I)i + (v + u sin 8))

whose magnitude is given by,

I ,/2 + v2 + u + 2uucos 8 + 2vusin e

The wave orbital velocity u can be expressed as

u-=u m cosmot
m

where um , the maximum wave orbital velocity, is
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U
m T sinh kh

The x and y components of the time averaged bottom friction

then become,

2w7o ct (2
Tb 16w f ( + u cose o i *I-UtId(at) (2

T by Y6T f (v + u m sine cos at) lutld(at) (23)

where I' tI can now be written as,

/22 + 2 2sai'ti = U+V + U os + 2uu cos at cosO + 2vu cos at sine

Both of these stress components T bx and T byare of the form

- Pf 2w
T b 1- Io f(at) d(at) (24)

or

- pf
T b 6n5

where Sn is a sum of terms to approximate the integral in Equation (24)

by Simpson's Rule:

S 3 (f 0(at) + 4f 1 (at) + 2f 2 (at) +4f 3 (at) + ..

+ 2 fn- 2 (at) + 4f n-l(at) ~4 fn(at)) (25)
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JI
where n is some positive even int,.ger Aixd

2wA (ct) =-
n

To find the x component of the shear stress the sum S ncan be found

by taking the integrand in Equation (22) for the function f(ot).

Similarly, for the y direction the function f(at) is given by the

integrand in Equation (23). The value of n was chosen to be

16. This choice was based on a comparison between the increased

accuracy achieved with an n value greater than 16 and the increased

computation time associated with a higher n value.

LATERAL MIXING

In a paper by Longuet-Higgins (1970), the author presented

a formulation for the steady state velocity distribution as a

result of waves breaking on a plane beach at some angle to the

beach normal. This formulation was based on a balance between the

bottom friction and the excess momentum flux in the longshore

direction due to the presence of waves. The resulting longshore

velocity distribution increased linearly from zero at the beach

to its maximum at the breaker line. Outside the breaker line the

velocity was everywhere zero.

However, physical observation and both laboratory and field

data indicate that mean longshore flows are present beyond the
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breaker zone. In a companion paper Longuet-Higgins presented a

formulation which included lateral mixing as the means for the

alteration of the linear velocity distribution into profiles found

in nature as shown in Figure 3. These profiles have the discontinuity

Without
Longshore Mixing
Velocity

With
Mixing

Breaker Line

DISTANCE OFFSHORE

Figure 3 Longuet-Higgins' Analytical Solution for Oblique
Wave Attack on a Plane Beach

at the breaker line removed and the peak velocity shifted shoreward.

The velocities do tend to zero some distance outside of the breaker

line.

There is a physical model to explain the mechanism of mixing

and it is based on momentum exchange between fluid elements as

they fluctuate. Consider a velocity distribution as shown in Figure 4.

Allow the fluid element at xI with mean velocity vI to have a

turbulent fluctuation u' in the direction parallel to the x axis.
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x

av

v ax

x2  1 1

x v

v (x)

Figure 4 Definition Sketch for the Lateral Mixing Formulation

If this fluctuation u' caused the fluid element to move to its new

position x2, then the element would be accelerated by the faster

moving fluid with velocity v2, thereby increasing the momentum of

the fluid element. The flux of momentum in translating fluid from

x to x2 is pu'. Multiplying by -v' which is the difference in
1 2

velocities between the two fluid layers gives the momentum change

per unit time in the direction of the mean flow or conversely, the

shear stress exerted by the fluid layer at xI on the fluid layer

at x2 given by T = -pu'v'. The negative sign is a consequence of a

positive turbulent velocity u' causing a negative shear stress

because the layer at x2 is impeded by the fluctuation of the fluid

element from layer 1.

1

1._
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Using a Taylor series approximation to first order between

the points x1 and x2 to find an expression for v' gives,

V'( v av

v' =v 2-vl = (V1 + xVi = ax"

Therefore, the lateral shear stress between the fluid layers can be

written as,

av
T = u 3

Since for an arbitrary coordinate system the velocity

distribution could vary in two directions the shear could also

include a term

r -pv' yay

For this reason the lateral shear stress Tt will be assumed to be,

I~1pv Ly* By Ux axav

Two coefficients of lateral mixing, one for each direction x and y,

are defined such that,

Ex = ul x  and Cy = V'ty

The lateral shear stress is finally written as

T P u + C 3
yj y Lx ax
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Longuet-Higgins argued that tie mixing coefficient ex

must tend to zero as the shoreline was approached since the turbulent

eddies responsible for mixing cannot be of a scale greater than the

distance to shore. He assumed that e is proportional to the distance

offshore, x, multiplied by some velocity scale which he chose to

be /gh, the speed of a wave in shallow water where h is the local

water depth. Therefore, x can be written as

x *i
where N is a dimensionless constant whose limits Longuet-Higgins gave

as
0 <N < 0.016 .

In this model the coefficient, c., was allowed to vary linearly

with x to some value around the breaker line. From this point

seaward the coefficient remained at this constant value. The reason

for this approximation is that physically there must be some limit

on the scale of these eddies. This limit is at presentnot known.

The coefficient, £y, was chosen to be constant. It is important to

. note that the purpose of the model is to present a stable numerical

scheme which includes the effects of mixing. It is not an attempt

to verify the choice of the mixing coefficients used.

I
I.

- I, . ..... . . .... i.. ...: .... .. . . .. .
... . .. ...__ _ _ _ _"-_ _.....__ _ _ _ _ _ _ - '
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CHAPTER III
FINITE DIFFERENCE

FORMULATION

At this point we have established a set of three governing

equations, both mass and momentum, to be solved along with wave

transformation equations and forcing terms from the momentum equations.-

This set of equations cannot be solved analytically so another method

of solution must be found. In this chapter a means for solving the

mass, momentum, and wave transformation equations numerically is

presented. In the following chapter the boundary and initial

conditions will be formulated along with the actual solution technique.

To solve the problem numerically a numerical scheme must be

defined which leads to a systematic method of solution. This

requires the following: (1) a breakdown of the area under study

into a well defined grid system with a systematic way of defining

variables of interest, and (2) the conversion of the governing

equations into their finite differenced forms.

A rectangular grid mesh was established over the area of

interest as shown in Figure 5 where x and y denote the offshore and

longshore directions, respectively. The size of the grid blocks is

31
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1 2 3 4 N N+I N+2

2

3

4

Ax

Ay

M-2

M-1

M

x

Figure 5 Grid Scheme Definitions

given by Ax in the x direction and Ay in the y direction. At each

grid block, designated by the subscripts i and j as shown in Figure 6,

certain variables must be defined. The velocities u. and v
I ,i i'j

are defined as being positive if they enter the i,j grid block in the

positive x and y directions. Every other variable will be defined
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at the grid center. The choice of this definition scheme lends

itself well to the boundary conditions used in the model.

The methods used to transform the continuity and momentum

equations into their differenced forms will be dealt with in detail.

The derivation for the other equations will be mentioned only

briefly. Again, the more detailed derivation can be found in

Birkemeier and Dalrymple. Following the methods of Blumberg (1977)

and Lilly (1965), certain operators are used throughout the derivation of

the integrated mass and momentum equations. The first two operators are

essentially central finite differences and are given by,

1 Ax - ~-Ax
6{F(xy,t)1 - {F(x+ -,y,t) F (x- L1,yt)x Ax 2 2

1{F(xyt)} E {F(x+ Ax,y,t) - F(x-Axy,t))x 2Ax

In the first case the differencing takes place over one spacial

grid (Ax) and in the second case, over two full grids (2Ax). Also

defined are the following two operators which are merely 'verages

in space, first in one direction, then in two.

These are given by,

1 Ax Ax

F(x,y,t) [ 2 F(x+ -2jiy~t) + F(x-

F(x,y,t)V
y -F(xy,t)

x
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Note that in all four operators, F(x,y,t) is some arbitrary function

which varies in space and time. Similar operators also exist for

time t and in the other horizontal dimension, y.

The governing continuity and momentum equations, Equations (6),

(10) and (11), can be written in the following differenced forms,

CONTINUITY:

t (T) +a (Du) + y (wDyv) -0 (26)

x MOMENTUM:

---t -- x ---

6t (u) + ax(Ou U) +6 y(-Dyv ) =

-1 -- 1l--x 1 (--y

-gD 6 (n) +-t - t -- ( ) (27)
x P BX p bgc p y xy

S6 (S) + t {Cy (U) 6 + uC 6y{-1y (v)}
P x xy y y y x x

y MOMENTUM:

6 t (Dyv + OxlD u vy) + y (Byv Y)

- y(n) +P --- y -(Sy (28)
y P sy p by p y yy

1 (u)1+x6 {FCy (
P x xy xY( y y ()x x x
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I
jIt is important to note that when using the above differenced

equations that the x,y coordinate is defined wherever the quantity

]to be solved for is defined. For example, since the x momentum

equation is used to solve for the u velocity component, the x,y

coordinate is located where u. . is defined. In the continuity

Jequation, the free surface displacement n is to be solved for so

the x,y coordinate is defined to be at the center of the grid

where Tj is defined. This is important in converting from xy

notation into i,j notation.

In the i,j notation defined in Figure 6 these three governing

equations become term by term,

y

i-l'j-1 i-l'j i-l, j+l

i,j-i i,j i,j+l

+ x i+l,j-l i+l,j i+l,j+l

Figure 6 Differencing Coordinate (i, j) Sketch

I

..........
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CONTINUITY:

t 1A i- nij

6 (D u) -{(D. 1 .+D. .)u (Di..+Di_ 1 .)u.. (29)

6 (D'v) -{(D ij++Di )v -(D. .+D. 1_)v.1
y 2Ay i,j+ i,j ij1 ijij ,

x MOMENTUM:

1 {(n+1 n+1 nI-i n-i n-1 n-i
(Du) =-(D +D )u (D. +. )

t Ati,j Di-1,ju i,j i,j+D,_1,ju i,j

6u~' [ =f(Di+i,j+Di,j)ui+i,j + (D~jD

{(u il +u ~ .)I-{(Di +Di_,)u.ip + (D. .~l+D i-, u Vii){(u. *+u.iii K

y * 9-y 1,j~

y( Bljui y~ L {(i,j+1 1j,)v i1 i1,_,j+1 -1,j i-,j+1fui~~ij- 1

-g9d(n) g .(D~+D .2vj+(D +D-TIu *~

p7I TSX h(%S i,jI-TSX i_, (30) I
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P ~x 2 bx x ijb 1-1.j

16(~Y) (.2 S . - s-
p y xy4Ayp xy i,j+1 sxy i,j-i 1,xy i-i,j+i y -1j-

P x xx PAX xx i,j xx i-±,j

V'C 1c6(U n-i n-i )In-i n-i n-i
D 6 c 62Cu)) 2 {D.I j+D.~ *){ (ui..~i-u. .)

cn-1i( n-i- n-i
y i,j ij-1

{ VC) -ni - n-i + n-i + n-i,+ n-i,

n-i n-i n-i n-1 n-i n-i n-i n-i
(v. - )-(c + (v -~~
L,j+1 vi-i~j+i X i,) X i~j-i ,x i-i,j-i ,x i-ilj 1,) 1-?,)J

y MOMENTUM:

6 jY 1 n+1n~ n+1 ,n-i+ n-i n-i

6 (O"u (D) +D )u (+D )
x I ~ ~ ~ ~~ ilj1ij1i1i1

{(V + ))-{Di~jDi_,,~u +D j_,Di~l ) *(

I.~ ~ J1iji ~'-l
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{(v i'+ v )1-{(D. .+D.~_)ii(ijDJ2) '- '( ~~ijl)

(31)

T SY 2P s i'+T SY i'j-i

ptby - 2p(TbX i j+Tby i,]_l,

Py yy PAY yy i'j yy i'j-1~

(S (-)=- +S-S -

e1 n-i nP-i n-i n-i n-i
x Cy yu) 2x y (D ,) i,j-1 )Cy i+i,j ui+i,j-l

n-1 n-i n-i
Cy ( i,j i,j-i

-9 {FCY8 (V) } i F l+Dn M -i +C n-i +c n- n-i
B (Ax) 2 L' iij-l X i+ ij x i+l~j X' 2.) i'ji.

(Vn-1,- n-i -(; n-i + n-i n-1I+ n-i ( n-i n-l

The superscripts n,n+i,n-l denote the time level of a particular

quantity. If the time level is not specified it is assumed to be

equal to n. Also, the horizontal mixing terms are iagged in time

for stability reasons, as mentione.. in Holland and Lin (1975).
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Looking back at the set of equations, Equations (18), (19) and

(21), which govern the refraction and shoaling of waves through wave-

current interaction, if Equation (19) is differentiated with respect

3k ak
to x to get T and with respect to y to get Lk, these quantities can

be substituted into Equation (18), which can then be written in the

following form:

A - + -B =C (32)
ax a

where A, B and C are functions of the quantities sin 6, cos 0, k, h, u

and v. By taking a forward difference in x to approximate 21 and a

backwards difference in y to approximate 7, Equation (32) becomes:

-e D + E 0. F e (33)
j -1 i+l j

where D, E, and F are now functions of the quantities sin i,j ,

cos ei, j , ki, j , hi, j , ui,j , vi, j. To evaluate sin 0. and

cos ei,j Noda used a first order Taylor series expansion to the four

neighboring grids i+l, j. i-l, j, i, j+l and i, j-1, sumned the results

and took an average value.

The theta field 0 is solved for in the following way.

Snell's Law is used to approximate the angles at the offshore row.

Working shoreward Equation (33) is solved for in a row-by-row relaxation

until the angles converge to their correct values with wave-current

interaction included. After each updated value of theta, a new wave

number must be solved for.
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rL

Equation (19) can be written as

E(k) {gk tanh(kh)}I/2 + ukcose + vksinO - = 0 (34)T

To solve for the wave number, k, after each updated angle is found,

the Newton-Raphson Method, or "method of tangents", is used. This

method states that

k k E(k old
new old E'(kold)

Differentiating Equation (34), k is iteratively solved for until
new

knew kodl < .001 tknewl

The wave height field is calculated in much the same way as

H
the wave angle field. Multiplying Equation (21) by i and letting

= 0, the energy equation can now be written in the form
at

A aH aH (35)
ax ay

where A, B and C are functions of u, v, cos 8, sin 0, Cg9 Ax, Ay and

the radiation stresses. Taking a forward difference in x to
aH a

approximate Tx and a backward difference in y to approximate IH and

solving for Hi'j. it can be shown that

Hi, j -D Hi,j_1  E H i+l, j  }

L]

'I
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where D and E are functions of the same quantities as A, B and C.

Again the offshore row of wave heights are obtained from shoaling

and refraction due to Snell's Law and the wave height field is

determined by relaxing row by row in the shoreward direction.

On each row a solution for the wave height is reached when

-Hn old <.01 Hne After each updated value of Hi .a

Hnew ld--0 new i

breaking wave height is also calculated from the breaking criteria

given by the Miche formula

H
(-) .12 tanh(kh)bL bb

If the calculated Hi, j is larger than the allowable breaking height,

the height H. . was set equal to the breaking height.

4Mo

!-

!
!

!
r
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CHAPTER IVI METHOD OF SOLUTION

In the previous chapter the three governing equations,

conservation of both mass and horizontal momentum, were derived in

their finite difference forms. The numerical procedure, used by

Birkemeier and Dalrymple and Noda, et al., to calculate the wave

characteristics used in the "forcing terms" in the momentum

equations was also presented. In this chapter the initial and

boundary conditions will be stated completing the problem formula-

Ition, whereupon a method of sclution will be given.
IIn every application of the present model the initial

conditions were assumed to be the state of rest. The velocity field,

both u and v components as well as the mean free surface displacement,

Jn, were initially set equal to zero. An initial depth field is

inputted into the model and the wave characteristics, both angles

I and heights, were calculated initially using Snell's Law. The wave

height was built up from zero to its full deep water value over a

h certain number of iterations using the hyperbolic tangent function in

[ order to prevent "shock loading" the model. The form for this

build-up is,

S42



43

2t
H =H tanh ()

where

H = deep water wave height

0

t = time the model has progressed

T = time allowed for wave build-up.

Certain boundary conditions were also invoked. Referring to

the grid system shown in Figure 5, no offshore flow was allowed

into row m. This is represented by

u . 0
in,)

which essentially simulates a wall at the offshore end of the grid

mesh. The reason behind this choice of boundary condition is this:

at, or near, steady state, if row m is far enough offshore so that

the effects of rip currents and longshore currents are negligible,

the assumption of zero onshore-offshore velocity is valid. A more

correct boundary condition would be to let the mean free surface be

zero in deep water which would entail the addition of grid blocks

offshore, thereby increasing computational time and expense. At the

inshore end of the grid mesh no velocities were allowed to enter the

first dry grid row. Again, this implies the existance of a wall at

the beach boundary.

In the longshore direction periodic boundary conditions were

imposed. Again referring to Figure 5, for any quantity, Q, periodicity

I

I
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requires that,

Qli,l) = Q(i,N)

Q(i,2) Q(i,N+l)

]Q(i,3) Q(i,N+2)

and so forth. Periodic boundary conditions were used because circu-

lation patterns along coastlines often tend to have a periodicity

associated with them. Also if it is desired to model an arbitrary

stretch of beach that has no periodicity, we can choose boundaries

far enough away from this area of interest, such that periodic

boundary conditions in the longshore direction become applicable.

The differenced mass and momentum equations from the preceding

chapter were derived using a central difference in time for the

time dependent terms. These three equations can also be written in

the following abbreviated form,

n+l n-(
S i + 2At F1  36)

n+l n-I
U. =A u.,. + 2At F (37)

n+l Bi + 2At F3  (38)

v. B e ~
'Ij 1'j3

where A and B are functions of the depth alone and FI, F2 , and F3

are functions of all the variables in the problem. Also remember that

F1, F2 , and F3 contain quantities evaluated at time level, n, and n-l.
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These three equations could have also been derived using a forward

difference in time in which case,

n+l n
i,j = i,j + At F1 (39)

n+l n

uin~ j = C u n~j 
+ At F4  (40)

v n+l D vn + AtF . (41)
1,) i , 5

This set of equations will be used to start the computation scheme

as will be seen in the following discussion.

The problem has now been formulated with a set of three

differenced, governing equations (Equations (36), (37), and (38)),

initial conditions and boundary conditions. The next step is to

develop a computational scheme to solve the problem. Given the

initial conditions, the wave characteristics and the values of

n, u, and v at time zero (n=0), the functions C, D, Fi, F4 , and F5,

in the set of Equations (39) through (41), become known. Using a

time step of l/2At instead of At, to increase the accuracy of the

first calculations, the new values of n, u, and v at time n+l can

be calculated. Knowing these new values the wave-current interaction

equations can be solved to find wave heights, angles, and wave

nmbers at time At/2.
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The next calculation is done using a computational scheme

called the "leapfrog" technique, which uses the set of Equations

(36-38). To employ the leapfrog scheme variables must be defined

for the two previous time steps, which has been established using

the initial conditions and the results from the first forward

difference calculation. Referring to Figure 7, the variables are

known at time levels n-l and n. The functions Fi, F2 , F3 , A and B

are thus known and u, v, and n at time level n+l can be calculated

using the same time step of l/2At. The wave-current equations are

again solved at time n+l making all of the variables defined at 0

and At.

time level n-l n n+l

time 0 At At

Forward I
Difference

Leapfrog

Figure 7 Initial Forward Difference and the First Leapfrog
Solution Steps
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The leapfrog scheme is now employed wit' a time step of At,

illustrated in Figure 8. The quantities at time level n+l are calcu-

lated knowing the quantities at time levels n-i and n. This procedure

continues throughout the remaining steps of computation except for

a slight modification. Using strictly the leapfrog scheme for this

particular set of equations resulted in a stability problem which

will be discussed in the following chapter.

time level n-I n n+l n+2

time 0 At At 2At 3At

leapfrog

lpr
leaplfrog

F r 8leapfrog

Figure 8 General Leapfrog Solution Sche
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CHAPTER V

jSTABILITY ANALYSIS

The exact stability criteria for the full sets of equations

used in the model cannot be determined analytically. In the applica-

jtions of this model, stability can be expressed in the following manner.
The speed of propagation of some disturbance in the model must be

less than or equal to the speed it takes the disturbance to cross

a computational grid block in a computational time step. If this

criterion is not met, the model will not be able to "see" the

disturbance.

The disturbance speed is in general the speed of a shallow

water gravity wave plus some time independent mean current.

Therefore, in general, the stability criteria can be expressed as,

22
At <- Jul + (A

The maximum magnitude of the wave speed exceeds the minimum current

speed in general so the stability criterion used in applications of

this model is,

48
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At 
<

'g-hmax

which is a type of two-dimensional Courant number. In all cases,

the time step actually used is much less than that given by the

above criteria. The determination of a better stability criteria I
and the probable limits on the time step were not investigated in

much detail.

As mentioned in the preceding chapter an instability

resulted from using the leapfrog technique to integrate the

equations in time. As the model approached a steady state, the

solution diverged into two disjoint solutions; one associated with

the even time steps and the other the odd steps. These solutions

oscillated with growing amplitudes about the steady state solution.

In Roache (1972), the author referred to this as time splitting.

To alleviate the problem, a leapfrog-backward correction

scheme, Kurihara (1965), was initiated every tenth time step. The

scheme is shown below as,

h* =h n - 1 + 2At Gn (42)

hn+ h + At G* (43)

where h may be u, v, or ri. Equation (42) is simply the leapfrog

calculation done by the Equations (36-38) where * denotes the new or

Ii
LI
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"interim" time level. Using the new values u, v , n at time *, the

. functions G* like the functions F1, F2, and F3 from Equations (36-38)

are calculated and used in Equation (43), which is merely a backwards

difference in time to the level n.

This scheme was chosen because it damps the computational

mode of the solution while leaving the physical mode relatively

unaffected. For a more in-depth discussion the reader is referred

to the work by Kurihara. With this correction scheme included,

which essentially "ties" the solutions together, every tenth

iteration, the model proceeded to reach a steady state without any

further time-splitting instability.



CHAPTER VI
RESULTS

PLANE BEACH APPLICATIONS

The model was first applied to the case of a single progres-

sive wave train approaching a planar beach at some angle to the

beach normal. Periodic boundary conditions were imposed in the

longshore direction making the beach infinitely long. The purpose

of this application was to compare the model to the earlier efforts

of Birkemeier and Dalrymple and to the analytical work of Longuet-

Higgins (1970) on longshore currents generated by obliquely incident

waves.

For the series of plane beach runs, the same input data was

used. The deep water wave characteristics were: (1) wave period

of 8.0 seconds, (2) wave angle of 30.0 degrees from the beach

normal, and (3) a wave height of 2.0 meters built up over 200

(At = 0.5 second) iterations. The time step of 0.5 seconds is

well below the "allowable" value of about 1.8 seconds computed from

the stability criteria presented in the previous chapter. The

region of interest was broken into a 6 x 30 grid mesh with a grid

51
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spacing of 10.0 meters in the x direction and 15.0 meters in the

y direction. The beach slope was chosen to be 0.025 which resulted

in water depths of 0.0 to 7.00 meters. In all runs the bottom

friction factor, f, was chosen to be 0.08. When applicable, the

mixing coefficients N and c were chosen to be 0.01 and 0.5 meters/

sec 2 , respectively.

In each case the model was run for 1200 iterations which is

nearly steady state. This is demonstrated in plots of mean free

surface displacement, or velocity, versus time at selected grid

points which, for the case using the present model without horizontal

mixing, are shown in Figures 9 through 12. Note the dominant period

of oscillation of about 112 seconds. This corresponds well to the

seiche period (of 113 seconds) for the first mode of oscillation for

a triangular basin given by the expression (Wilson, 1966),

T 3.28 L

gkh

where, T = period of oscillation in the basin

L = length of the basin

h = maximum depth in the basin.
max

The area of interest for the plane beach applications is essentially

an infinitely long triangular basin as a result of the flow conditions

imposed at the inshore and offshore boundaries.

1.
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Figure 9 Plot of Inshore Mean Free Surface Displacement Versus Time for
the Present Non-Linear Model Application to a Plane Beach
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Figure 10 Plot of offshore Mean Free Surface Displacement Versus TimeI
for the Present Non-Linear Model Application to a Plane Beach
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Figure 11 Plot of Inshore i-Velocity Component Versus Tim for the

Present Non-Linear Model Application to a Plane Beach
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I.

Figure 12 Plot of Inshore y-Velocity Component Versus Time for the
Present Non-Linear Model Application to a Plane Beach

II
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In the first run the data was inputted into the linear model

Jof Birkemeier and Dalrymple. The resulting longshore current profile

is shown in Figure 13. Note the monotonic increase in the magnitude

of the velocity from zero at the dry beach to a maximum of about

1.15 meters per second, 110 meters offshore, which is approximately

the location of the breaker line. From the maximum, the velocity

decreases rapidly to zero and remains essentially zero outside the

breaker line, indicating no offshore mixing effects.

Note the similarity between the form of this current profile

and the form given by Longuet-Higgins (1970) analytical solution

for the case of a wave approaching a planar beach at some oblique

angle, neglecting the effects of mixing, as shown in Figure 3. The

major difference between the two profiles is that the linear model

result shows less of a discontinuity at the breaker line. This is

caused by the use of a discrete, onshore-offshore grid size in the

numerical model which obscures the breaker line. As this grid

dimension is reduced the location of the breaker line becomes

better defined thus reducing the effect of "breaker line smoothing"

on the velocity distribution. Also associated with this grid size

reduction is an increase in the magnitude of the peak velocity to

something on the order of that predicted by Longuet-Higgins, which

for the input data, is about 1.5 meters per second.
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A lesser point to note is that in all the plane beach applica-

tions, there is a slight discontinuity in the velocity profile at the

inshore region. This is due to the fact that initially a small amount

of water was placed in each block of the first "dry" grid row. As

time proceeded, this block was then allowed to fill, in essence,

simulating the effects of flooding. Had a procedure been implemented

that would have allowed for the flooding of more than one grid row,

this discontinuity would have disappeared.

Figure 14 shows the longshore current profile resulting from

the present non-linear version of the model excluding the effects of

horizontal mixing. The form is similar to the linear result except for

the decrease in peak velocity and the extension of the profile a

small distance outside the breaker zone. The existence of velocities

outside the breaker zone is due to the fact that the advective

acceleration terms in the differenced y momentum equation caused

velocities outside the breaker zone to be calculated using velocities

inside the breaker zone. The deviation between peak velocities

predicted by the two models is attributed to the use of the quadratic,

"exact" bottom friction formulation used in the non-linear model.

Liu and Dalrymple (1978) showed that the use of this bottom friction

term caused the peak velocities of Longuet-Higgins linear approximation

to be decreased by about 20% for a breaking wave angle of around

10 degrees. In the plane beach applications of the linear and non-

linear models the breaker angle is about 12 degrees and the discrepancy

-m-
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in peak velocities between the two models is about that same 20%.

The final run using the plane beach data was made with the

non-linear model including lateral mixing. The steady state long-

shore velocity profile is shown in Figure 15. This profile exhibits

the following differences from that predicted by the model neglecting

mixing:

(1) in the inner one half of the surf zone the
velocities are increased slightly,

(2) the peak velocity is shifted to a new
location shoreward of the breaker line, and

(3) the velocity distribution extends well
beyond the breaker line eventually decreasing
towards zero.

The form of this profile is similar to the analytic result of

Longuet-Higgins including the effects of mixing shown in Figure 3.

BARPED PROFILE APPLICATION

Since, in nature, beach topography is often comprised of

fragmented longshore bars, the present version of the model was

run on a bottom configuration that included an infinitely long

longshore bar. A comparison of the barred profile with a planar

beach (with a slope of 0.025) is shown in Figure 16. The remaining

input into the model was identical to that used in the series of

plane beach runs. The model was run both with and without the effects

of mixing included.

Sol Iswedsavoui
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The results for the case without mixing are shown in

Figure 17. Notice the two distinct regions where a longshore

current distribution exists. The velocity "spike" offshore is due

to waves breaking on the bar. As the wave height decreases, as a

result of breaking, an onshore-offshore gradient of y momentum flux

is created which drives a longshore current. In the trough, however,

the wave height starts to reform (no more breaking) resulting in

the absence -f a longshore current in this region. In reality, a

longshore current does exist in the trough, Allender, et al. (1978),

due to the mechanisms of turbulent dissipation during breaking

within a bore, lateral mixing which has been included in the model,

and a set-up of water within the trough, Dalrymple (1978).

Figure 18 shows the resulting longshore current profile for

the model run including horizontal mixing. The effects of mixing

are very much evident as the amplitude of the longshore velocity

"spike" is reduced, the discontinuities in the velocity profile

disappear, and a longshore current now exists in the bar trough. Had

the turbulent energy dissipation mechamism been included in the

model, the results would probably have approached those found in

nature.

PERIODIC BOTTOM TOPOGRAPHY APPLICATION

The model was next applied to the periodic bottom topography

developed by Noda, et al., which is essentially a channel at some
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angle to the beach normal. The formulation for this bottom

configuration is given in Appendix A. The present version of the

model, including the effects of mixing, was compared to the linear

model of Birkemeier and Dalrymple. The following wave characteristics

were used in both instances:

(1) deep water wave height of 1.0 meters,

(2) wave period of 4.0 seconds, and

(3) a deep water wave angle of 30.0 degrees to
the beach normal.

The bottom friction factor, f, was chosen to be 0.08, and the mixing

2
coefficients, N and cy, were chosen to be 0.005 and 0.5 m/sec , respectively.

In both runs the wave height was built up to its deep water value

over 100 seconds.

Both models were run until they reached approximately a

steady state, about 500 seconds. The wave-current interaction process

was halted in the linear model after 150 seconds because the

offshore velocity components grew too large for the refraction

routines to handle. In the non-linear model, however, the wave-

current interaction process was included for the duration of the

run time. The circulation patterns after 500 seconds are shown in

* Figures 19 and 20.

Note the strength of the rip and its offshore extent in

the linear model compared to non-linear model. The peak velocity in

I.
b
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the linear model run is about 3.0 meters per second where, as in the

non-linear model, it is about 0.8 meters per second. This large

discrepancy is due to the inclusion of mixing in the non-linear

model. The mixing tends to spread the rip out and decrease its

offshore velocity components thus causing the rip to turn more in

the longshore direction as shown in Figure 20. The effects of the

convective acceleration terms are not clearly visible because it

seems as though the form of the rip itself is governed primarily by

horizontal mixing.

INTERSECTING WAVES APPLICATION

The final application of the model was to the case of inter-

secting wave trains of the same frequency on a plane beach which

Dalrymple (1975) showed could generate rip currents. The purpose

of this application was to investigate the effect of the convective

acceleration terms in the model. The following derivation closely

follows the work of Dalrymple.

Given two intersecting wave trains A and B with amplitudes

a and b and a common frequency, a, in terms of the coordinate system

shown in Figure 21, the free surface displacements for the two

wave trains can be written as,

I - a cos(k cos ax + k sin ay + at)

2 b cos(k cos Ox + k sin Oy + at)
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* Figure 21 Definition Sketch for the Intersecting Waves Application

The to tal free surface = 1 + 12can then be written as,

T1 2a cos {1icosx + cos $)x + t-(sina + sin $)y + ait}

cos {~Icosi cos B)x + !-(sini sin BOyl

+ (b-a)cos {k cos Ox + k sin Sy + at) (44)

Using the linearized dynamic free surface boundary condition the

velocity potential *T can be shown to equal,

=2ag cosh k(h+z) .,k!(os + cos O~ + k(ia+si ) t
T a cosh kh 2~~.(oc 2(iu+snB+~

cos fl(cosa - cos O)x + 1(sini - sin O)yI

I + b-a~ coh k~~z)sinfk cos Ox + kc sin $y + at)
a cosh Ich
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From the velocity potential the total orbital velocities can be

found from,

-ax ,ay 3

The radiation stresses, which are essentially the forcing terms, are

defined as,

Sxx = -h p 2 + J Pdz - i pg(h+n)2 + 1 pg n2

1 -- f-2 1 2

= pv2dz+ P pg(h++) +f Pgn

S = .. dz
.1

J-h

where
+i 0x ° a~ 0--

P g(n-z) +afpuvdz+ Af pwdz-pv

Through tedious calculations the radiation stresses are found to be,

S [ 42Cos 2 + b2 cos2 8 + 2ab coscnoscos2® ]. {2kh+sinh2kh}

-PB ab (coso-cosa) 2cos{2 ( {2khcosh2kh-sinh2kh}

-sinh2kh (sins-sino) 2cos{2 }" f2khcosh2kh-slnh2kh}

1.
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P9 2 + 2 ab cos[2()9 }{sinh2kh-2kh)
4sinh2kh

+ pgabcos 2 @~ + i- pg(b-a) 2

s yy 4sinh2kh [a sin2a+b sin 6+ 2absincasin~cos{2Dj7{2kh+sinh2khI

Pgab 2
- sinh2kh (cosO-cosa) cos{2(C P {2khcosh2kh-sinh2khl

-sinhak (sina-sina) 2cos {223 P 2khcosh2kh-sinh2kh)

4siPh9ka 2+b 2+2abcos {2(2D I]}(sinh2kh-2kh)

+ Pgabcos 2 + 1Pg(b-a)

S1 ~ 4sn~hasnzoa cos~sin+abcos2Q sin(cz+Oj

{ 2kh+sinh2kh}

where the expression "@.9" is defined as,

C2) = k cosci-cosB)x + !i(sina-sin$)y

The time independent mean free surface displacement, ti,

is defined by
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- 1 ~2 2 2
- 2g z=0

where "-- denotes the time average over one wave period.

Substituting the expressions for the velocity components u, v, and

w from the velocity potential *T' n can be written as,

7 2sinh2kh a 2+b +2abcos{2 2() (cos(-8)cosh2kh-sinh2kh] (45)

where 02 is the same quantity defined previously. Notice that

the mean free surface displacement is modulated in the x and y

directions by,

cos{k(cosa-cos$)x + k(sina-sinO)y}

Using Snell's Law which says,

kosina =k sin a and kosin80 =k sin 80 0 0

2w
and using the fact that k°  - , where "o" denotes deep water values

0

for the wave length, L, and the wave angles, a and 8, we see that

there is a periodicity of the mean displacement in the longshore

direction with a periodic spacing, 9, given by,

L

sin - sin 80

i:
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This periodicity in water level and wave height causes water to

be driven from regions of high mean water level displacement to

regions of lower displacement resulting in the formation of

circulation cells.

In order to attempt to model this phenomena, certain

simplifications to the model had to be made. Since the refraction

and shoaling routines borrowed from the work of Noda, et al., could

not treat more than one wave train, they were replaced with

routines governed by Snell's Law neglecting wave-current interaction.

Again a quadratic, "exact," bottom friction was used including

velocities due to both mean currents and, this time, the two wave

trains. In the momentum equations the advective acceleration terms

were retained, horizontal mixing was neglected, and the radiation

stresses were calculated using the results presented earlier in this

section. A procedure for determining the wave heights for use in

the radiation stresses and the bottom frictional stresses is given

in Appendix B.

Three runs were made using different combinations of wave

heights and wave angles. The remainder of the input data for all

three runs, however, was the same and is given as follows. The

waves were run on a plane beach with a slope of 0.025. The planform

area of interest was comprised of 25 grids in the x direction with

an Ax grid size of 5.0 meters, and 21 grids in the longshore direction
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with a Ay grid size of 4.0 meters. The time step was chosen to be

0.2 seconds and the model was run for 1500 iterations for all three

cases. A wave period of 7.159366 seconds was used which resulted

in rip spacings of 80.0 meters. The bottom friction factor was

set equal to 0.12 to allow the system to reach steady state after the

1500 iterations and to decrease the magnitude of the resultant currents.

The first case run used waves of equal heights and equal

angles on either side of the beach normal. The deep water wave

heights were 0.25 meters and the deep water angles were + 30.0

degrees. For this case, referring to Equation (44), a=b and a=-8

resulting in a free surface displacement given by

TIT = 2a cos(k sin aoy)cos(k cos ax + at)

This free surface describes a wave train moving in the

-x direction with a modulated wave height that is periodic in the

longshore direction only. The periodicity in wave height is the

driving mechanism producing the rip current perpendicular to

the beach as shown in Figure 22. Note the constricted width of the

rip current in relation to the width of the inflow region. This

is a result of the convective acceleration terms. Also note the

weak rip head where the currents diverge from the rip axis and

return towards shore.

I.
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In the second case the waves again were chosen to be of

equal height (0.25 meters) but one wave approached normal to shore

while the other approached at an angle of 60.0 degrees to the beach

normal; i.e., a=b but aO-O. The resulting free surface is modulated

in both the x and y directions which should result in a rip current

at an angle to the beach normal given by,

6 = tan-1 sin a - sin 8)
Cos a - Cos

For this case the angle should be about 30.0 degrees. The results

are shown in Figure 23.

In the third case the waves, A and B, had different heights,

0.1 and 0.4 meters, and wave angles of 30.0 and -30.0 degrees,

respectively. The resulting circulation pattern is shown in

Figure 24. Note the meandering current with alternating regions

of strong and weak longshore velocity along the beach. This

circulation would lend itself well to the formation of rythmic

beach features. Looking at Equation (44), we see that there is a

non-zero term,

(b-a)cos{k cos Bx + k sin By + at)

which is a wave train at an angle to the beach normal with height

2(b-a). This wave is present in addition to the normal wave train

with the modulated height from the first case causing a longshore

current which is superimposed on tLa cellular circulation.
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CHAPTER VII
CONCLUSIONS

A model that can accurately predict currents and wave

transformations in the nearshore zone is a necessary step in attempt-

ing to predict actual changes to our coastlines. From the work

done in this project and the results found, it appears that the

inclusion of the convective acceleration terms and lateral mixing

terms in the horizontal momentum equations have important effects

on models used to predict nearshore circulation. The terms become

especially significant in attempts to model circulation over

irregular bottom topographies which include bars and channels.

There are still many aspects of the model that could be

changed to make it even more complete. Among them are:

(1) enable the model to handle more than one wave
train within the wave-current interaction process,

(2) include a better wave-current interaction scheme,
especially in the surf zone, which could treat
strong offshore flows that oppose the wave
orbital velocities,

(3) treat the continuity and momentum equations with
an implicit scheme to avoid stability problems, or

81
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(4) obtain a better knowledge of the stability of

the present model as a function of various
parameters, and

(5) create the ability to handle a variable grid
size so that special regions of interest could
be investigated in more detail.

In its present form the model is a very powerful tool yet continual

improvements are needed to maintain its usefulness. F

Ii

ti



APPENDIX A

PERIODIC BOTTOM TOPOGRAPHY

The periodic bottom profile used in the model was developed

by Noda, et al. (1974). The depths are given by

= ~E1+ epf (x1/3 10 W
h mx +A exp{-3(O 1 sin (y-x tan

where m = beach slope - .025

x,y are the coordinates of the depth location

A = length of periodic beach = 80 meters

A = amplitude of bottom variation = 20

= angle of rip channel to beach normal = 30 degrees.

The grid spacing was chosen to 5.0 and 4.0 meters in the x and y

* directions respectively. There were 25 and 21 grids in the x and y

directions. The last grid row and the "dry" grid rows were made planar

with the slope being .025.

*8I

*f



APPENDIX B

DETERMINATION OF WAVE HEIGHTS FOR THE CASE OF INTERSECTING WAVES

Given the two wave trains

ni a cos(k cos ax + k sin ay + at)

12 b cos(k cos Bx+ k sin Sy + at)

The total free surface nT n + ncan be written as,

=a cos(c+lt) + bcos(6+cyt)

where c and 6 are phase functions. Expanding the expression for

nand rearranging,

T= cos at {a cos e4- b cos6} sin at {a sin c+ b sin 61

Defining D coosia cose+ b cos 6

and D sin esa sine+ b sin 6

inbecomes

-D Cos (at + e)

84
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where D = "(a cos e + b cos 6)2 + (a sin e + b sin 6)2

Therefore, the total wave height due to the intersecting waves is

2D. Substituting in the expressions for e and 6, the total wave

height can be written,

H T= 2.0\1a2+b2+2ab cos[k(cosa-cosB)x + k(sina-sinB)y] (46)

The amplitudes a and b are given by the expressions

1
HA (47)2 rA 'sA

1
b - H IC I. (48)

2 B  1481
B  sB

where Kr and K are the refraction and shoaling coefficients derived

using Snell's Law.

To determine if breaking occurs, this total wave height is

compared to a limiting breaker height of Kh, here K. is a breaking

coefficient chosen as 0.78. If the total wave height exceeded the

value given by the breaking criterion, that value of wh was substi-

tuted into Equation ( 46) for HT. A parameter 8 was defined such

that b S Oa. This result was substituted into Equation (46) for

b. The equation was then solved for a which gave b. The wave

heights in the surf zone were then found using Equations (47) and (48).

[
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